Publications
A Carborane-Derived Proton-Coupled Electron Transfer Reagent
Adillon, E. A.; Peters, J. C.* JACS, 2024, Available Online
Photodriven Sm(III)-to-Sm(II) Reduction for Catalytic Applications
Johansen, C. M.; Boyd, E. A.; Tarnopol, D. E.; Peters, J. C.* JACS, 2024, 146, 25456-25461.
Electrochemical CO2 Reduction in Acidic Electrolytes: Spectroscopic Evidence for Local pH Gradients
Hicks, M.; Nie, W.; Boehme, A. E.; Atwater, H. A.*; Agapie, T.*; Peters, J. C.* JACS, 2024, 146, 25282-25289.
Reductive samarium (electro)catalysis enabled by SmIII-alkoxide protonolysis
Boyd, E. A.; Shin, C.; Charboneau, D. J.; Peters, J. C.*; Reisman, S. E.* Science, 2024, 385, 847–853.
Intermolecular Proton-Coupled Electron Transfer Reactivity from a Persistent Charge-Transfer State for Reductive Photoelectrocatalysis
Garrido-Barros, P.; Romero, C. G.; Winkler, J. R.*; Peters, J. C.* JACS, 2024, 146, 18, 12750–12757.
Potassium ion modulation of the Cu electrode-electrolyte interface with ionomers enhances CO2 reduction to C2+ products
Heim, G. P.; Bruening, M. A,; Musgrave III, C. B.; Goddard III, W. A.; Peters, J. C.; Agapie, T. Joule, 2024, 8, 1-10.
Electrode Surface Heating with Organic Films Improves CO2 Reduction Kinetics on Copper
Watkins, N. B.; Lai, Y.; Schiffer, Z. J.; Canestraight, V. M.; Atwater, H. A.; Agapie*, T.; Peters*, J. C.; Gregoire*, J. M. ACS Energy Lett., 2024, 9, 1440-1445.
Catalytic Reduction of Cyanide to Ammonia and Methane at a Mononuclear Fe Site
Johansen, C. M.; Peters*, J. C. J. Am. Chem. Soc., 2024, 146, 8, 5343-5354.
Improving Molecular Iron Ammonia Oxidation Electrocatalysts via Substituent Effects that Modulate Standard Potential and Stability
Zott, M. D.; Peters*, J. C. ACS. Catal., 2023, 13, 21, 14052-14057.
Highly Selective Fe-Catalyzed Nitrogen Fixation to Hydrazine Enabled by Sm(II) Reagents with Tailored Redox Potential and pKa
Boyd, E. A.; Peters*, J. C. J. Am. Chem. Soc., 2023, 145, 27, 14784-14792.
Advancing Electrocatalytic Nitrogen Fixation: Insights from Molecular Systems
Peters*, J. C. Faraday Discuss., 2023, 243, 450-472.
Hydrodynamics Change Tafel Slopes in Electrochemical CO2 Reduction on Copper
Watkins, N. B.; Schiffer, Z.; Lai, Y.; Musgrave III, C.; Atwater, H. A.; Goodard III, W. A.; Agapie*, T.; Peters*, J. C.; Gregoire*, J. M. ACS Energy Lett., 2023, 8, 2185-2192.
Electrocatalytic Nitrogen Reduction on a Molybdenum Complex Bearing a PNP Pincer Ligand
Ibrahim, A. F.; Garrido-Barros, P.; Peters, J. C.* ACS Catal., 2023, 13, 1, 72-78.
In Situ Deposited Polyaromatic Layer Generates Robust Copper Catalyst for Selective Electrochemical CO2 Reduction at Variable pH
Watkins, N. B.; Wu, Y.; Nie, W.; Peters, J. C.*; Agapie, T.* ACS Energy Lett., 2023, 8, 1, 189-195.
Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO2 Reduction to C2+ Products Under Strongly Acidic Conditions
Nie, W.; Heim, G. P.; Watkins, N. B.; Agapie, T.*; Peters, J. C.* Angew. Chem. Int. Ed., 2023 - Available Online.
Light Alters the NH3 vs N2H4 Product Profile in Iron-catalyzed Nitrogen Reduction via Dual Reactivity from an Iron Hydrazido (Fe=NNH2) Intermediate
Garrido-Barros, P.; Chalkley, M. J.; Peters, J. C. Angew. Chem. Int. Ed., 2023, 62, 9, e202216693.
Sm(II)-Mediated Proton-Coupled Electron Transfer: Quantifying Very Weak N–H and O–H Homolytic Bond Strengths and Factors Controlling Them
Boyd, E.; Peters*, J. C. J. Am. Chem. Soc., 2022, 144, 46, 21337-21346.
Catalytic Transfer Hydrogenation of N2 to NH3 via a photoredox catalysis strategy
Johansen, C.; Boyd, E.; Peters*, J.C. Science Advances, 2022, 8, 43, eade3510.
Use of a PCET Mediator Enables a Ni-HER Electrocatalyst to Act as a Hydride Delivery Agent
Derosa, J.; Garrido-Barros, P.; Li, M.; Peters*, J. C. J. Am. Chem. Soc., 2022, 144, 43, 20118-20125.
Characterization of a Proposed Terminal Iron(III) NitrideIntermediate of Nitrogen Fixation Stabilized by a Trisphosphine-Borane Ligand
Schild, D. J.; Nurdin, L.; Moret, M-E.; Oyala*, P. H.; Peters*, J. C. Angew. Chem. Int. Ed., 2022, 61, e202209655.
Mechanism of a Luminescent Dicopper System That Facilitates Electrophotochemical Coupling of Benzyl Chlorides via a Strongly Reducing Excited State
Zott, M. D.; Canestraight, V. M.; Peters*, J. C. ACS Catal., 2022, 12, 10781-10786.
Electrocatalytic Ketyl-Olefin Cyclization at a Favorable Applied Bias Enabled by a Concerted Proton–Electron Transfer Mediator
Derosa, J.; Garrido-Barros, P.; Peters*, J. C. Inorg. Chem., 2022, 61, 17, 6672-6678.
Photoinduced, Copper-Catalyzed Enantioconvergent Alkylations of Anilines by Racemic Tertiary Electrophiles: Synthesis and Mechanism
Cho, H.; Suematsu, H.; Oyala, P. H.; Peters*, J. C.; Fu*, G. C. J. Am. Chem. Soc., 2022, 144, 10, 4550-4558.
Molecular Coatings Improve the Selectivity and Durability of CO2 Reduction Chalcogenide Photocathodes
Lai, Y.; Watkins, N. B.; Muzzillo, C.; Richter, M.; Kan, K.; Zhou, L.; Haber, J. A.; Zakutayev, A.; Peters, J. C.; Agapie, T.; Gregoire, J. M. ACS Energy Lett., 2022, 7, 3, 1195-1201.
Investigation of the C–N Bond-Forming Step in a Photoinduced, Copper-Catalyzed Enantioconvergent N–Alkylation: Characterization and Application of a Stabilized Organic Radical as a Mechanistic Probe
Lee, H.; Ahn, J.-M.; Oyala, P. H.; Citek, C.; Yin, H.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc., 2022, 144, 9, 4114-4123.
Tandem electrocatalytic N2 fixation via proton-coupled electron transfer
Garrido-Barros, P.; Derosa, J.; Chalkley, M. J.; Peters, J. C. Nature, 2022, 609, 71-76.
Synthesis and functionalization reactivity of Fe-thiocarbonyl and thiocarbyne complexes
Deegan, M. M.; Peters, J. C. Polyhedron, 2021, 209, 115461, 1-9.
Breaking Scaling Relationships in CO2 Reduction on Copper Alloys with Organic Additives
Lai, Y.; Watkins, N. B.; Rosas-Hernández, A.; Thevenon, A.; Hein, G. P.; Zhou, L.; Wu, Y.; Peters, J. C.; Gregoire, J. M.; Agapie, T. ACS Cent. Sci., 2021, 1756-1762.
Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C2 and C3 Product Streams
Yadegari, H.; Ozden, A.; Alkayyali, T.; Soni, V.; Thevenon, A.; Rosas-Hernández, A.; Agapie, T.; Peters, J. C.; Sargent, E. H.; David Sinton, D. ACS Energy Lett., 2021, 3538–3544.
Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity
Chen, C.; Peters, J. C.; Fu., G. C. Nature, 2021, 596, 250-256.
Electrocatalytic Reduction of C–C π-Bonds via a Cobaltocene-Derived Concerted Proton-Electron Transfer Mediator: Fumarate Hydrogenation as a Model Study
Derosa, J.; Garrido-Barros, P.; Peters, J. C. J. Am. Chem. Soc., 2021, 143, 25, 9303-9307.
Enhanced Ammonia Oxidation Catalysis by a Low-Spin Iron Complex Featuring Cis Coordination Sites
Zott, M. D.; Peters, J. C. J. Am. Chem. Soc., 2021, 143, 20, 7612–7616.
Dramatic HER Suppression on Ag Electrodes via Molecular Films for Highly Selective CO2 to CO Reduction
Thevenon, A.; Rosas-Hernández, A.; Fontani Herreros, A. M.; Agapie, T.; Peters, J. C. ACS Catal., 2021, 11, 8, 4530–4537.
Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene
Ozden, A.; Wang, Y.; Li, F.; Luo, M.; Sisler, J.; Thevenon, A.; Rosas-Hernández, A.; Burdyny, T.; Lum, Y.; Yadegari, H.; Agapie, T.; Peters, J. C.; Sargent, E. H.; Sinton, D. Joule, 2021, 5, 3, 706-719
Tripodal P3XFe–N2 Complexes (X = B, Al, Ga): Effect of the Apical Atom on Bonding, Electronic Structure, and Catalytic N2-to-NH3 Conversion
Fajardo Jr., J.; Peters, J. C. Inorg. Chem., 2021, 60, 2, 1220-1227.
Hydrazine Formation via Coupling of a Nickel(III)-NH2 Radical
Gu, N. X.; Oyala, P.; Peters, J. C. Angew. Chem. Int. Ed., 2021, 60, 4009-4013.
Generating potent C-H PCET donors: Ligand-induced Fe-to-ring proton migration from a Cp*FeIII-H complex demonstrates a promising strategy
Schild, D. J.; Drover, M. W; Oyala, P.; Peters, J. C. J. Am. Chem. Soc., 2020, 142, 44, 18963–18970.
Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes
Dong, H. T.; Chalkley, M. J.; Oyala, P. H.; Zhao, J.; Alp, E. E.; Hu, M. Y.; Peters, J. C.; Lehnert, N. Inorg. Chem., 2020, 59, 20, 14967–14982.
A molecular mediator for reductive concerted proton-electron transfers via electrocatalysis
Chalkley, M. J.; Garrido-Barros, P.; Peters, J. C. Science, 2020, 369, 850-854.
Dihydrogen Adduct (Co-H2) Complexes Displaying H-atom and Hydride Transfer
Deegan, M. M.; Hannoun, K. I.; Peters, J. C. Angew. Chem. Int. Ed., 2020, 59, 22631-22637.
High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer
Ozden, A.; Li, F.; Garciá de Arquer, F. P.; Rosas-Hernández, A.; Thevenon, A.; Wang, y.; Hung, S. F.; Wang, X.; Chen, B.; Li, J.; Wicks, J.; Luo, M.; Wang, Z.; Agapie, T.; Peters, J. C.; Sargent, E. H.; Sinton, D. ACS Energy Lett., 2020, 5, 2811-2818.
Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes
Chalkley, M. J.; Drover, M. W.; Peters, J. C. Chem. Rev., 2020, 120, 5582-5636.
H2 Evolution from a Thiolate-Bound Ni(III) Hydride
Gu, N. X; Oyala, P. H.; Peters, J. C. J. Am. Chem. Soc, 2020, 7827-7835.
Relating N–H Bond Strengths to the Overpotential for Catalytic Nitrogen Fixation
Chalkley, M. J.; Peters, J. C. Eur. J. Inorg. Chem, 2020, 1353-1357.
Molecular tuning of CO2-to-ethylene conversion
Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; Edwards, J. P.; Xu, Y.; McCallum, C.; Tao, L.; Liang, Z. Q.; Luo, M.; Wang, X.; Li, H.; O'Brien, C. P.; Tan, C. S.; Nam, D. H.; Quintero-Bermudez, R.; Zhuang, T. T.; Li, Y. C.; Han, Z.; Britt, R. D.; Sinton, D.; Agapie, T.; Peters, J. C.; Sargent, E. H. Nature, 2020, 577, 509-513.
Molecular enhancement of heterogeneous CO2 reduction
Nam, D.H.; De Luna, P.; Rosas-Hernandez, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J.C.; Shekhah, O.; Eddaoudi, M.; Sargent, E.H. Nature Materials, 2020, 19, 266-276.
In-Situ Nanostructuring and Stabilization of Polycrystalline Copper by an Organic Salt Additive Promotes Electrocatalytic CO2 Reduction to Ethylene
Thevenon, A.; Rosas-Hernández, A.; Peters, J. C.; Agapie, T. Angew. Chem. Int. Ed., 2019, 58, 16952-16958.
Electrocatalytic Ammonia Oxidation Mediated by a Polypyridyl Iron Catalyst
Zott, M. D.; Garrido-Barros, P.; Peters, J. C. ACS Catal., 2019, 9, 10101-10108.
Mononuclear Fe(I) and Fe(II) Acetylene Adducts and Their Reductive Protonation to Terminal Fe(IV) and Fe(V) Carbynes
Citek, C.; Oyala, P. H.; Peters, J. C. J. Am. Chem. Soc., 2019, 141, 15211-15221.
Snapshots of a Migrating H-Atom: Characterization of a Reactive Iron (III) Indenide Hydride and its Nearly Isoenergetic Ring-Protonated Iron(I) Isomer
Drover, M. W.; Schild, D. J.; Oyala, P. H.; Peters, J. C. Angew. Chem. Int. Ed., 2019, 58, 15504-15511.
O-Functionalization of a cobalt carbonyl generates a terminal cobalt carbyne
Deegan, M.; Peters, J. C. Chem. Commun., 2019, 55, 9531-9534.
Characterization of the Earliest Intermediate of Fe-N2 Protonation: CW and Pulse EPR Detection of an Fe-NNH Species and Its Evolution to Fe-NNH2+
Nesbit, M. A.; Oyala, P. H.; Peters, J. C. J. Am. Chem. Soc., 2019, 141, 8116-8127.
Light Enhanced Fe-Mediated Nitrogen Fixation: Mechanistic Insights Regarding H2 Elimination, HER, and NH3 Generation
Schild, D. J.; Peters, J. C. ACS Catal., 2019, 9, 4286-4295.
Cp* Noninnocence Leads to a Remarkably Weak C–H Bond via Metallocene Protonation
Chalkley, M. J.; Oyala, P. H.; Peters, J. C. J. Am. Chem. Soc., 2019, 141, 4721-4729.
Electronic Structures of an [Fe(NNR2)]+/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation
Thompson, N. B.; Oyala, P. H.; Dong, H. T.; Chalkley, M. J.; Zhao, J.; Alp, E. E.; Hu, M.; Lehnert, N.; Peters, J. C. Inorg. Chem., 2019, 58, 3535-3549.
Catalytic hydrazine disproportionation mediated by a thiolate-bridged VFe complex
Gu, N. X.; Ung, G.; Peters, J. C. Chem. Commun., 2019, 55, 5363-5366.
Zerovalent Rhodium and Iridium Silatranes Featuring Two‐Center, Three‐Electron Polar σ Bonds
Nance, P.; Thompson, N. B.; Oyala, P. H.; Peters, J. C. Angew. Chem. Int. Ed., 2019, 58, 6220-6224.
Visible-Light-Induced, Copper-Catalyzed Three-Component Coupling of Alkyl Halides, Olefins, and Trifluoromethylthiolate To Generate Trifluoromethyl Thioethers
He, J.; Chen, C.; Fu, G. C.; Peters, J. C. ACS Catal., 2018, 8, 11741-11748.
ENDOR Characterization of (N2)FeII(μ-H)2FeI(N2)−: A Spectroscopic Model for N2 Binding by the Di-μ-hydrido Nitrogenase Janus Intermediate
Yang, H.; Rittle, J.; Marts, A. R.; Peters, J. C.; Hoffman, B. M. Inorg. Chem., 2018, 57, 12323-12330.
Electrophile-promoted Fe-to-N2 hydride migration in highly reduced Fe(N2)(H) complexes
Deegan M. M.; Peters, J. C. Chem. Sci., 2018, 9, 6264-6270.
Fusing triphenylphosphine with tetraphenylborate: introducing the 9-phosphatriptycene-10- phenylborate (PTB) anion
Drover, M. W.; Nagata,K.; Peters, J. C. Chem. Commun., 2018, 54, 7916-7919.
An S=1/2 Iron Complex Featuring N2, Thiolate, and Hydride Ligands: Reductive Elimination of H2 and Relevant Thermochemical Fe–H Parameters
Gu, N. X.; Oyala, P. H.; Peters, J. C. J. Am. Chem. Soc., 2018, 140, 6374-6382.
Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring pKa Effects and Demonstrating Electrocatalysis
Chalkley, M. J.; Del Castillo, T. J.; Matson, B.; Peters, J. C. J. Am. Chem. Soc., 2018, 140, 6122-6129.
Expanding the allyl analogy: accessing η3-P,B,P diphosphinoborane complexes of group 10
Drover, M. W.; Peters, J. C. Dalton Trans, 2018, 47, 3733-3738.
Fe-mediated HER vs N2RR: Factors that Determine Selectivity in P3EFe(N2) (E = B, Si, C) Catalyst Model Systems
Matson, B.; Peters, J. C. ACS Catalysis, 2018, 8, 1448-1455.
The Design of a Photoredox Catalyst that Enables the Direct Synthesis of Carbamate-Protected Primary Amines via Photoinduced, Copper-Catalyzed N-Alkylation Reactions of Unactivated Secondary Halides
Ahn, J. M.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc., 2017, 139, 18101-18106.
Copper-Catalyzed Alkylation of Aliphatic Amines Induced by Visible Light
Matier, C. D.; Schwaben, J.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc., 2017, 139, 17707-17710.
Catalytic Nitrogen-to-Ammonia Conversion by Osmium and Ruthenium Complexes
Fajardo, J.; Peters, J. C.; J. Am. Chem. Soc., 2017, 139, 16105-16108.
Nitrogen Fixation via a Terminal Fe(IV) Nitride
Thompson, N. B.; Green, M. T.; Peters, J. C.; J. Am. Chem. Soc., 2017, 139, 15312-15315.
Photoinduced, Copper-Catalyzed Decarboxylative C–N Coupling to Generate Protected Amines: An Alternative to the Curtius Rearrangement
Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C.; J. Am. Chem. Soc., 2017, 139, 12153-12156.
CO2 Reduction Selective for C≥2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives
Han, Z.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T.; ACS Central Science, 2017, 3, 853-859.
Photoinduced, Copper-Catalyzed Alkylation of Amines: A Mechanistic Study of the Cross-Coupling of Carbazole with Alkyl Bromides
Ahn, J. M.; Ratani, T.; Hannoun, K. I.; Fu, G. C.; Peters, J. C.; J. Am. Chem. Soc., 2017, 139, 12717-12723.
N2-to-NH3 Conversion by a Triphos–Iron Catalyst and Enhanced Turnover under Photolysis
Buscagan, T. M.; Oyala, P. H.; Peters, J. C.; Angew. Chem. Int. Ed., 2017, 56, 6921-6926.
N-H Bond Dissociation Enthalpies and Facile H-atom Transfers for Early Intermediates of Fe-N2 and Fe-CN Reductions
Rittle, J.; Peters, J. C.; J. Am. Chem. Soc., 2017, 139, 3161-3170.
CO Reduction to CH3OSiMe3: Electrophile-Promoted Hydride Migration at a Single Fe Site
Deegan, M.; Peters, J. C.; J. Am. Chem. Soc., 2017, 139, 2561-2564.
Catalytic N2-to-NH3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET
Chalkley, M.; Del Castillo, T.; Matson, B.; Roddy, J.; Peters, J. C.; ACS Central Science, 2017, 3, 217-223.
Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell
Jung, S.; Kortlever, R.; Jones, R.; Lichterman, M.; Agapie, T.; McCrory, C.; Peters, J. C.; Analytical Chemistry, 2017, 89, 581-585.
Exploring secondary-sphere interactions in Fe-NxHy complexes relevant to N2 fixation
Creutz, S. E.; Peters, J. C.; Chem. Sci., 2017, 8, 2321-2328.
Breaking the Correlation between Energy Costs and Kinetic Barriers in Hydrogen Evolution via a Cobalt Pyridine-Diimine-Dioxime Catalyst
Huo, P; Uyeda, C; Goodpaster, J. D.; Peters, J. C.; Miller, T. F.; ACS Catal., 2016, 6, 6114-6123.
Proton-Coupled Reduction of an Iron Cyanide Complex to Methane and Ammonia
Rittle, J.; Peters, J. C; Angew. Chem. Int. Ed., 2016, 55, 12262-12265.
A Triad of Highly-Reduced, Linear Iron Nitrosyls: {FeNO}8-10
Chalkley, M.; Peters, J. C; Angew. Chem. Int. Ed., 2016, 55, 11995-11998.
A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench 57Fe Mössbauer Data, and a Hydride Resting State
Del Castillo, T.; Thompson, N.; Peters, J. C.; J. Am. Chem. Soc., 2016, 138, 5341-5350.
A Mechanistic Investigation of the Photoinduced, Copper-mediated Cross-coupling of an Aryl Thiol with an Aryl Halide
Johnson, M.; Hannoun, K.; Tan, Y.; Fu, G.; Peters, J. C.; Chem. Sci., 2016, 7, 4091-4100.
Spin-State Tuning at Pseudo-tetrahedral d6 Ions: Spin Crossover in [BP3]FeII-X Complexese
Creutz, S.; Peters, J. C.; Inorg. Chem., 2016, 55, 3894-3906.
An Fe-N2 Complex That Generates Hydrazine and Ammonia via Fe═NNH2: Demonstrating a Hybrid Distal-to-Alternating Pathway for N2 Reduction
Rittle, J.; Peters, J. C.; J. Am. Chem. Soc., 2016, 138, 4243-4248.
A Ni0(η2-(Si-H))(η2-H2) Complex That Mediates Facile H Atom Exchange between Two σ-Ligands
Connor, B. A.; Rittle, J.; VanderVelde, D.; Peters, J. C.; Organometallics, 2016, 35, 686-690.
Asymmetric Copper-Catalyzed C-N Cross-Couplings Induced by Visible Light
Kainz, Q. M.; Matier, C. D; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C.; Science, 2016, 351, 681-684.
Benchmarking Nanoparticulate Metal Oxide Electrocatalysts for the Alkaline Water Oxidation Reaction
Jung, S.; McCrory C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F.; J. Mater. Chem., 2016, 4, 3068-3076.
Photoinduced, Copper-Catalyzed Carbon–Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature
Ratani, T.; Bachman, S.; Fu, G. C.; Peters, J. C.; J. Am. Chem. Soc., 2015, 137, 13902-13907.
Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide
McCrory, C. C. L.; Szymczak, N. K.; Peters, J. C.; Electrocatalysis, 2015, 7, 87-96.
E–H Bond Activations and Hydrosilylation Catalysis with Iron and Cobalt Metalloboranes
Nesbit, M. A.; Suess, D. L. M.; Peters, J. C.; Organometallics, 2015, 34, 4741-4752.
Preface for Small-Molecule Activation: From Biological Principles to Energy Applications. Part 2: Small Molecules Related to the Global Nitrogen Cycle
Lehnert, N.; Peters, J. C.; Inorg. Chem., 2015, 54, 9229-9233.
Diiron Bridged-Thiolate Complexes that bind N2 at the FeIIFeII, FeIIFeI, and FeIFeI Redox States
Creutz, S. E.; Peters, J. C.; J. Am. Chem. Soc., 2015, 137, 7310-7313.
Characterization of an Fe≡N-NH2 Intermediate Relevant to Catalytic N2 Reduction to NH3
Anderson, J.; Cutsail III, G.; Rittle, J.; Connor, B.; Gunderson, W.; Zhang, L.; Hoffman, B.; Peters, J. C.; J. Am. Chem. Soc., 2015, 137, 7803-7809.
Evaluating Molecular Cobalt Complexes for the Conversion of N2 to NH3
Del Castillo, T. J.; Thompson, N. B.;Suess, D. L.; Ung, G.; Peters, J. C.; Inorg. Chem., 2015, 54, 9256-9262.
The Cobalt Hydride that Never Was: Revisiting Schrauzer's "Hydridocobaloxime"
Lacy, D. C.; Roberts, G. M; Peters, J. C.; J. Am. Chem. Soc., 2015, 137, 4860-4864.
Visible Light Sensitized CO2 Activation by the Tetraaza [CoIIN4H(MeCN)]2+ Complex Investigated by FT-IR Spectroscopy and DFT Calculations
Zhang, M.; El-Roz, M.; Frei, H.; Mendoza-Cortes, J.; Head-Gordon, M.; Lacy, D.; Peters, J. C.; J. Phys. Chem. C., 2015, 119, 4645-4654.
Benchmarking HER and OER Electrocatalysts for Solar Water Splitting Devices
McCrory, C.; Jung, S.; Ferrer, I.; Chatman, S.; Peters, J. C.; Jaramillo, T.; J. Am. Chem. Soc., 2015, 137, 4347-4357.
Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation
Fong, H.; Peters, J. C.; Inorg. Chem., 2015, 54, 5124-5135.
Reduction of CO2 by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal–Ligand Binding of CO2
Sieh, D.; Lacy, D. C.; Peters, J. C.; Kubiak, C. P.; Chem. Euro. J., 2015, 21, 8497-8503.
Low Temperature N2 Binding to 2-coordinate L2Fe0 Enables Reductive Trapping of L2FeN2- and NH3 Generation
Ung, G.; Peters, J. C.; Angew. Chem. Int. Ed, 2015, 54, 532-535.
Photoinduced, Copper-Catalyzed Alkylation of Amides with Unactivated Secondary Alkyl Halides at Room Temperature
Do, H. Q.; Bachman, S.; Bissember, A. C.; Peters J. C.; Fu, G. C.;J. Am. Chem. Soc., 2014, 136, 2162-2167.
Free H2 Rotation vs Jahn-Teller Constraints in the Non-Classical Trigonal (TBP)Co-H2 Complex
Gunderson, W.; Suess, D.; Fong, H.; Wang, X.; Hoffmann, C.; Cutsail, G.; Peters, J. C.; Hoffman, B.; J. Am. Chem. Soc., 2014, 136, 14998-15009.
A 106-Fold Enhancement in N2-Binding Affinity of an Fe2(µ-H)2 Core upon Reduction to a Mixed-Valence FeIIFeI State
Rittle J.; McCrory C.; Peters, J. C.; J. Am. Chem. Soc., 2014, 136, 13853-13862.
Boryl-Metal Bonds Facilitate Cobalt/Nickel-Catalyzed Olefin Hydrogenation
Lin T. P.; Peters, J. C.; J. Am. Chem. Soc., 2014, 136, 13672-13683.
2-coordinate Fe(0) and Co(0) complexes supported by cyclic (alkyl)(amino)carbenes
Ung, G.; Rittle, J.; Soleilhavoup, M.; Bertrand, G.; Peters, J. C.; Angew. Chem. Int. Ed., 2014, 53, 8427-8431.
Studies of Cobalt-Mediated Electrocatalytic CO2 Reduction Using a Redox-Active Ligand
Lacy, D. C.; McCrory, C.; Peters, J. C.; Inorg. Chem., 2014, 53, 4980-4988.
Low-Spin Pseudotetrahedral Iron(I) Sites in Fe2(µ-S) Complexes
Anderson, J. S.; Peters, J. C.; Angew. Chem. Int. Ed., 2014, 53, 5978-5981.
Oxygen Nucleophiles as Reaction Partners in Photoinduced, Copper-Catalyzed Cross-Couplings: O-Arylations of Phenols at Room Temperature
Tan, Y.; Munoz-Molina, J. M.; Fu, G. C.; Peters, J. C.; Chem. Sci., 2014, 5, 2831-2835.
Catalytic reduction of N2 to NH3 by an Fe-N2 complex featuring a C-atom anchor
Creutz, S. E.; Peters, J. C.; J. Am. Chem. Soc., 2014, 136, 1105-1115.
Facile Si–H Bond Activation and Hydrosilylation Catalysis Mediated by a Nickel-Borane Complex
MacMillan, S. N.; Harman, W. H.; Peters, J. C.; Chem. Sci., 2014, 5, 590-597.
A d10 Ni–(H2) Adduct En Route To H–H Oxidative Addition Across a Ni–B Bond
Harman, W. H.; Lin, T-P.; Peters, J. C.; Angew. Chem., Int. Ed, 2014, 53, 1081-1086.
Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
McCrory, C.; Jung, S.; Peters, J. C.; Jaramillo, T.; J. Am. Chem. Soc., 2013, 135, 16977-16987.
Boryl-Mediated Reversible H2 Activation at Cobalt: Catalytic Hydrogenation, Dehydrogenation, and Transfer Hydrogenation
Lin, T-P.; Peters, J. C.; J. Am. Chem. Soc., 2013, 135, 15310-15313.
Fe-N2/CO complexes that model a possible role for the interstitial C atom of FeMo-cofactor (FeMoco)
Rittle, J.; Peters, J. C.; Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 15898-15903.
A New Family of Nucleophiles for Photoinduced, Copper-Catalyzed Cross-Couplings via Single-Electron Transfer: Reactions of Thiols with Aryl Halides Under Mild Conditions (O °C)
Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C.; J. Am. Chem. Soc., 2013, 135, 9548-9552.
A CO-derived Fe Dicarbyne that Releases Olefin upon Hydrogenation
Suess, D. L.; Peters, J. C.; J. Am. Chem. Soc., 2013, 135, 12580-12583.
Catalytic Conversion of Nitrogen to Ammonia by an Iron Model Complex
Anderson, J. S.; Rittle, J.; Peters, J. C.; Nature, 2013, 501, 84-87.
A Versatile Approach to Ullmann C-N Couplings at Room Temperature: New Families of Nucleophiles and Electrophiles for Photoinduced, Copper-Catalyzed Processes
Ziegler, D.; Choi, J.; Muñoz-Molina, J; Bissember, A.; Peters, J. C.; Fu, G. C.; J. Am. Chem. Soc., 2013, 135, 13107-13112.
Selective Nitrite Reduction at Heterobimetallic CoMg Complexes
Uyeda, C.; Peters, J. C.; J. Am. Chem. Soc., 2013, 135, 12023-12031.
CO2 Reduction by Fe(I): Solvent Control of C-O Cleavage Versus C-C Coupling
Saouma, C. T.; Lu, C.; Day, M. W.; Peters, J. C.; Chem. Sci., 2013, 4, 4042-4051.
Pacman and Hangman Metal Tetraazamacrocycles
Lee, C. H, Villágran, D; Cook, T. R.; Peters, J. C.; Nocera, D. G.; ChemSusChem, 2013, 6, 1541-1544.
Transition-Metal-Catalyzed Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-Catalyzed Couplings of Carbazoles
Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu, G. C.; Angew. Chem. Int. Ed., 2013, 52, 5129-5133.
A Polar Copper-Boron One-Electron σ-Bond
Moret, M-E.; Zhang, L.; Peters, J. C.; J. Am. Chem. Soc., 2013, 135, 3792-3795.
H–H and Si–H Bond Addition to Fe≡NNR2 Intermediates Derived from N2
Suess, D. L. M.; Peters, J. C.; J. Am. Chem. Soc., 2013, 135, 4938-4941.
Heterolytic H2 Cleavage and Catalytic Hydrogenation by an Iron Metallaboratrane
Fong, H.; Moret, M-E.; Lee, Y.; Peters, J. C; Organometallics, 2013, 32, 3053-3062.
Conversion of Fe–NH2 to Fe–N2 with release of NH3
Anderson, J. A.; Moret, M-E.; Peters, J. C; J. Am. Chem. Soc. 2013, 135, 534.
Photoinduced Ullmann C-N Coupling: Demonstrating the Viability of a Radical Pathway
Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C.; Science, 2012, 338, 647-651.
Access to Formally Ni(I) States in a Heterobimetallic NiZn System
Uyeda, C.; Peters, J. C.; Chem. Sci., 2013, 4, 157-163.
Modeling the Signatures of Hydrides in Metalloenzymes: ENDOR Analysis of a Di-iron Fe(µ-NH)(µ-H)Fe Core
Kinney, A. R.; Saouma, C. T.; Peters, J. C.; Hoffman, B. M.; J. Am. Chem. Soc. 2012, 134, 12637-12647.
Dihydrogen Binding to Isostructural S = 1/2 and S = 0 Cobalt Complexes
Suess, D.; Tsay, C.; Peters, J. C.; J. Am. Chem. Soc. 2012, 134, 14158-14164.
Mononuclear Five- and Six-Coordinate Iron Hydrazido and Hydrazine Species
Saouma, C. T.; Lu, C. C.; Peters, J. C.; Inorg. Chem., 2012, 51, 10043–10054.
Late-Metal Diphosphinosulfinyl S(O)P2 Pincer-type Complexes
Suess, D.; Peters, J. C.; Organometallics, 2012, 31, 5213-5222.
A Ru(I) Metalloradical That Catalyzes Nitrene Coupling to Azoarenes From Arylazides
Takaoka, A.; Moret, M.E.; Peters, J. C.; J. Am. Chem. Soc., 2012, 134, 6695-6706.
Reversible H2 Addition Across a Nickel-Borane Unit As a Promising Strategy for Catalysis
Harman, W.H.; Peters, J. C.; J. Am. Chem. Soc., 2012, 134, 5080-5082.
Thermally Stable N2 and H2 Adducts of Cationic Nickel (II)
Tsay, C.; Peters, J. C.; Chem. Sci., 2012, 3, 1313-1318.
Electrocatalytic Hydrogen Evolution in Acidic Water with Molecular Cobalt Tetraazamacrocycles
McCrory, C.L.C; Uyeda, C.; Peters, J. C.; J. Am. Chem. Soc., 2012, 134, 3164-3170.
A Homologous Series of Cobalt, Rhodium, and Iridium Metalloradicals
Takaoka, A.; Peters, J. C.; Inorg. Chem., 2012, 51, 16-18.
N2 Functionalization at Iron Metallaboratranes
Moret, M.E.; Peters, J. C.; J. Am. Chem. Soc., 2011, 133, 18118-18121.
A Five-Coordinate Phosphino/ Acetate Iron(II) Scaffold That Binds N2, N2H2, N2H4 and NH3 in the Sixth Site
Saouma, C.; Moore, C.; Rheingold, A.; Peters, J. C.; Inorg.Chem. 2011, 50, 11285-11287.
Rapid Water Reduction to H2 Catalyzed by a Cobalt Bis(iminopyridine) Complex
Stubbert, B; Peters, J. C.; Gray, H.B.; J. Am. Chem. Soc., 2011, 133, 18070-18073.
A Non-classical Dihydrogen adduct of S=1/2 Fe(I)
Lee, Y; Kinney, R.A.; Hoffman, B; Peters, J. C.; J. Am. Chem. Soc., 2011, 133, 16366-16369.
Phosphido Pincer Complexes of Platinum: Synthesis, Structure and Reactivity
Mazzeo, M; Strianese, M; Kühl, O; Peters, J. C.; Dalton Trans., 2011, 40, 9026-9033.
Dinitrogen Complexes of Sulfur-Ligated Iron
Takaoka, A.; Mankad, N.P., Peters, J. C.; J. Am. Chem. Soc. 2011, 133, 8440-8443.
M≡E and M = E Complexes of Iron and Cobalt That Emphasize Three-fold Symmetry (E = O, N, NR)
Saouma, C.; Peters, J. C.; Coord. Chem. Rev., 2011, 255, 920-937.
Terminal Iron-Dinitrogen and Iron Imide Complexes Supported by a Tris(phosphino)borane Ligand
Moret, M.E.; Peters, J. C.; Angew. Chem. Int. Ed.,, 2011, 50, 2063-2067.
Silylation of Iron-Bound Carbon Monoxide Affords a Terminal Fe Carbyne
Lee, Y.; Peters, J. C.; J. Am. Chem. Soc., 2011, 133, 4438-94446.
Transformation of an [Fe(η2- N2H3)]+ Species to Π-Delocalized [Fe2(µ-N2H2)]2+/+ Complexes
Saouma, C.T.; Kinney, R. A.; Hoffman, B.M.; Peters, J. C.; Angew. Chem., 2011 50, 1-6.
Four-Coordinate, Trigonal Pyramidal Pt(II) and Pd(II) Complexes
Tsay, C.; Mankad, N. P.; Peters, J. C.; J. Am. Chem. Soc., 2010, 132, 13975-13977.
Ligand Design for Site-Selective Installation of Pd and Pt Centers to Generate Homo- and Heteropolymetallic Motifs
Suess, D.; Peters, J.C.; Chem. Commun., 2010, 46, 6554-6556.
E-type Delayed Fluorescence of a Phosphine-Supported Cu2(µ-NAr2)2 Diamond Core: Harvesting Singlet and Triplet Excitons in OLEDs
Deaton, J.; Switalski, S.; Kondakov, D.; Young, R.; Pawlik, T.; Giesen, D.; Harkins, S;Miller, A.; Mickenberg, S.; Peters, J. C.; J. Am. Chem. Soc., 2010, 132, 9499-9508.
Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron
Lee, Y.; Mankad, N.P.; Peters, J.C.; Nature Chemistry, 2010, 2, 558-565.
Access to Well-Defined Ruthenium(I) and Osmium(I) Metalloradicals
Takaoka, A.; Gerber, L.C.H.; Peters, J.C.; Angew. Chem. Int. Ed., 2010, 49, 4088-4091.
Efficient Luminescence from Easily Prepared Three-Coordinate Copper(I) Arylamidophosphines
Lotito, K. J.; Peters, J.C.; Chem. Comm., 2010, 46, 3690-3692.
Hydrogen Evolution by Cobalt Tetraimine Catalysts Adsorbed on Electrode Surfaces
Berben, L. A.; Peters, J.C.; Chem. Comm., 2010, 46, 398-400.
Catalytic N-N Coupling of Aryl Azides To Yield Azoarenes via Trigonal Bipyramid Iron-Nitrene Intermediates
Mankad, N. P.; Müller, P.; Peters, J. C.; J. Am. Chem. Soc., 2010, 132, 4083-4085.
Redox Rich Dicobalt Macrocycles as Templates for Multi-electron Transformations
Szymczak, N. K.; Berben, L. A.; Peters, J. C.; Chem. Comm., 2009, 6729-6731.
Characterization of Structurally Unusual Diiron NxHy Complexes
Saouma, C. T.; Müller, P.; Peters, J. C.; J. Am. Chem. Soc., 2009, 131, 10358-10359.
Multifrequency EPR Studies of [Cu1.5Cu1.5]+ for Cu2(µ-NR2)2 and Cu2(µ-PR2)2 Diamond Cores
Mankad, N. P.; Harkins, S. B.; Antholine, W. E.; Peters, J. C.; Inorg. Chem., 2009, 48, 7026-7032.
E-H Bond Activation Reactions (E = H, C, Si, Ge) at Ruthenium: Terminal Phosphides, Silylenes, and Germylenes
Takaoka, A.; Mendiratta, A.; Peters, J. C.; Organometallics, 2009, 28, 3744-3753.
Three-Coordinate Copper(I) Amido and Aminyl Radical Complexes
Mankad, N. P.; Antholine, W. E.; Szilagyi, R. K.; Peters, J. C.; J. Am. Chem. Soc., 2009, 131, 3878-3880.
Dinitrogen Complexes Supported by Tris(phosphino)silyl Ligands
Whited, M. T.; Mankad, N. P.; Lee, Y.; Oblad, P. F.; Peters, J. C.; Inorg. Chem., 2009, 48, 2507-2517.
Dimanganese and Diiron Complexes of a Binucleating Cyclam Ligand: Four-Electron, Reversible Oxidation Chemistry at High Potentials
Berben, L. A.; Peters, J. C.; Inorg. Chem., 2008, 47, 11669-11679.
Group VIII Coordination Chemistry of a Pincer-Type Bis(8-quinolinyl)amido Ligand
Betley, T. A.; Qian, B. A.; Peters, J. C.; Inorg. Chem., 2008, 47, 11570-11582.
Phosphido Pincer Complexes of Palladium as New Efficient Catalysts for Allylation of Aldehydes
Mazzeo, M.; Lamberti, M.; Massa, A.; Scettri, A.; Pellecchia, C.; Peters, J. C.; Organometallics, 2008, 27, 5741-5743.
Bis(α-diimine)iron Complexes: Electronic Structure Determination by Spectroscopy and Broken Symmetry Density Functional
Muresan, N.; Lu, C. C.; Ghosh, M.; Peters, J. C.; Abe, M.; Henling, L. M.; Weyhermöller, T.; Bill, E.; Wieghardt, K.; Inorg. Chem., 2008, 47, 4579-4590.
X-ray photochemistry in iron complexes from Fe(0) to Fe(IV) - Can a bug become a feature?
George, S. J.; Fu, J.; Guo, Y.; Drury, O. B.; Friedrich, S.; Rauchfuss, T.; Volkers, P. I.; Peters, J. C.; Scott, V.; Brown, S. D.; Thomas, C. M.; Cramer, S. P.; Inorg. Chim. Acta, 2008, 361, 1157-1165.
Probing the Electronic Structures of [Cu2(µ-XR2)]n+ Diamond Cores as a Function of the Bridging X Atom (X = N or P) and Charge (n = 0, 1, 2)
Harkins, S. B.; Mankad, N. P.; Miller, A. J. M.; Szilagyi, R. K.; Peters, J. C.; J. Am. Chem. Soc., 2008, 130, 3478-3485.
Diazoalkanes react with a bis(phosphino)borate Copper(I) source to Generate [Ph2BPtBu2]Cu(η1-N2CR2), [Ph2BPtBu2]Cu(CPh2), and [Ph2BPtBu2]Cu-N(CPh2)(NCPh2)
Mankad, N. P.; Peters, J. C.; Chem. Commun., 2008, 1061-1063.
Long-Lived and Efficient Emission from Mononuclear Amidophosphine Complexes of Copper
Miller, A. J. M.; Dempsey, J. L.; Peters, J. C.; Inorg. Chem., 2007, 46, 7244-7246.
Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes
Hu, X.; Brunschwig, B. S.; Peters, J. C.; J. Am. Chem. Soc., 2007, 129, 8988-8998.
Terminal FeI—N2 and FeII···H—C Interactions Supported by Tris(phosphino)silyl Ligands
Mankad, N. P.; Whited, M. T.; Peters, J. C.; Angew. Chem., Int. Ed., 2007, 46, 5768-5771.
XAS Characterization of a Nitridoiron(IV) Complex with a Very Short Fe-N Bond
Rohde, J.-U.; Betley, T. A.; Jackson, T. A.; Saouma, C. T.; Peters, J. C.; Que, L. Jr. Inorg. Chem., 2007, 46, 5720-5726.
Fe(I)-Mediated Reductive Cleavage and Coupling of CO2: An FeII(µ-O, µ-CO)FeII Core
Lu, C. C.; Saouma, C. T.; Day, M. W.; Peters, J. C.; J. Am. Chem. Soc., 2007, 129, 4-5.
Bio-organometallic Approaches to Nitrogen Fixation Chemistry
Peters, J. C.; Mehn, M. P.; William B. Tolman, ed.; Activation of Small Molecules Wiley-VCH, 2006, 81-119.
On the Feasibility of N2 Fixation via a Single-site FeI/FeIV Cycle: Spectroscopic Studies of FeI(N2)FeI, FeIV≡N, and Related Species
Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C.; Proc. Natl. Acad. Sci, 2006, 103, 17107-17112.
Pseudotetrahedral Manganese Complexes Supported by the Anionic Tris(phosphino)borate Ligand [PhBPiPr3]
Lu, C. C.; Peters, J. C.; Inorg. Chem., 2006, 45, 8597-8607.
Vibrational Spectrospcopy and Analysis of Pseudo-tetrahedral Complexes with Metal Imido Bonds
Mehn, M. P.; Brown, S. D.; Jenkins, D. M.; Peters, J. C.; Que, L. Jr. Inorg. Chem., 2006, 45, 7417-7427.
Unexpected Photoisomerization of a Pincer-type Amido Ligand Leads to Facial Coordination at Pt(IV)
Harkins, S. B.; Peters, J. C.; Inorg. Chem., 2006, 45, 4316-4318.
Characterization of the Terminal Iron(IV) Imides {[PhBPtBu2(pz')]FeIV≡NAd}+
Thomas, C. M.; Mankad, N. P.; Peters, J. C.; J. Am. Chem. Soc., 2006, 128, 4956-4957.
Mid- to High-Valent Imido and Nitrido Complexes of Iron
Mehn, M. P.; Peters, J. C.; J. Inorg. Biochem., 2006, 100, 634-643.
Complexes of Iron and Cobalt With New Tripodal Amido-polyphosphine Hybrid Ligands
Whited, M. T.; Rivard, E.; Peters, J. C.; Chem. Commun., 2006, 1613-1615.
An η3-H2SiR2 Adduct of [{PhB-(CH2PiPr2)3}FeIIH]
Thomas, C. M.; Peters, J. C.; Angew. Chem. Int. Ed., 2006, 45, 776-780.
High-spin and low-spin iron(II) complexes with facially-coordinated borohydride ligands
Mehn, M. P.; Brown, S. D.; Paine, T. K.; Brennessel, W. W.; Cramer, C. J.; Peters, J. C.; Que, L. Jr. Dalton Trans., 2006, 1347-1351.
Structural Snapshots of a Flexible Cu2P2 Core that Accommodates the Oxidation States CuICuI, Cu1.5Cu1.5, and CuIICuII
Mankad, N. P.; Rivard, E.; Harkins, S. B.; Peters, J. C.; J. Am. Chem. Soc., 2005, 127, 16032-16033.
Comparative Studies with Zwitterionic Platinum(II) Bis(pyrazolyl)borate and 2,2'-bipyridylborate Complexes
Thomas, C. M.; Peters, J. C.; Organometallics, 2005, 24, 5858-5867.
Heterolytic H2 Activation Mediated by Low Coordinate L3Fe-(µ-N)-FeL3 Complexes to Generate Fe(µ-NH) (µ-H)Fe Species
Brown, S. D.; Mehn, M. P.; Peters, J. C.; J. Am. Chem. Soc., 2005, 127, 13146-13147.
Electrocatalytic Hydrogen Evolution by Cobalt Difluoroboryl-diglyoximate Complexes
Hu, X.; Cossairt, B. M.; Brunschwig, B. S.; Lewis, N. S.; Peters, J. C.; Chem. Commun., 2005, 4723-4725.
Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary Ligands
Li, J.; Djurovich, P. I.; Alleyne, B. D.; Yousufuddin, M.; Ho, N. N.; Thomas, J. C.; Peters, J. C.; Bau, R.; Thompson, M. E.; Inorg. Chem., 2005, 44, 1713-1727.
Spin-State Tuning at Pseudotetrahedral d7 Ions: Examining the Structural and Magnetic Phenomena of Four-Coordinate [BP3]CoII-X Systems
Jenkins, D. M.; Peters, J. C.; J. Am. Chem. Soc., 2005, 127, 7148-7165.
Synthesis and Characterization of Cationic Iron Complexes Supported by the Neutral Ligands NPi-Pr3, NArPi-Pr3, and NSt-Bu3
MacBeth, C. E.; Harkins, S. B.; Peters, J. C.; Can. J. Chem., 2005, 83, 332-340.
A Highly Emissive Cu2N2 Diamond Core Complex Supported by a [PNP]- Ligand
Harkins, S. B.; Peters, J. C.; J. Am. Chem. Soc., 2005, 127, 2030-2031.
Ground-State Singlet L3Fe-(µ-N)-FeL3 and L3Fe(NR) Complexes Featuring Pseudotetrahedral Fe(II) Centers
Brown, S. D.; Peters, J. C.; J. Am. Chem. Soc., 2005, 127, 1913-1923.
Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center
Lu, C. C.; Peters, J. C.; J. Am. Chem. Soc., 2004, 126, 15818-15832.
Structural and Spectroscopic Studies of Three-Coordinate Copper(I) Supported by Bis(phosphino)borate Ligands
Thomas, J. C.; Peters, J. C.; Polyhedron, 2004, 23, 2901-2913.
Considering FeII/IV Redox Processes as Mechanistically Relevant to the Catalytic Hydrogenation of Olefins by [PhBPiPr3]Fe-Hx Species
Daida, E. J.; Peters, J. C.; Inorg. Chem., 2004, 43, 7474-7485.
The Coordination Chemistry of "[BP3]NiX" Platforms: Targeting Low-Valent Nickel Sources as Promising Candidates to L3Ni=E and L3Ni≡E Linkages
MacBeth, C. E.; Thomas, J. C.; Betley, T. A.; Peters, J. C.; Inorg. Chem., 2004, 43, 4645-4662.
Issues Relevant to C-H Activation at Platinum(II): Comparative Studies between Cationic, Zwitterionic, and Neutral Platinum(II) Compounds in Benzene Solution
Peters, J. C.; Thomas, J. C.; Thomas, C. M.; Betley, T. A.; Activation and Functionalization of C-H Bonds; Karen Goldberg and Alan Goldman, eds. ACS Symposium Series No. 885, 2004, chapter 20.
A Tetrahedrally Coordinated L3Fe-Nx Platform that Accommodates Terminal Nitride (FeIV≡N) and Dinitrogen (FeI-N2-FeI) Ligands
Betley, T. A.; Peters, J. C.; J. Am. Chem. Soc., 2004, 126, 6252-6254.
Anionic Tris- and Bis(diphenylphosphinomethyl)borates
Peters, J. C.; Thomas, J. C.; Inorg. Synth., 2004, 34, 8-14.
Hydrogenolysis of [PhBP3]Fe≡N-p-tolyl: Probing the Reactivity of an Iron Imide with H2
Brown, S. D.; Peters, J. C.; J. Am. Chem. Soc., 2004, 126, 4538-4539.
Amido-Bridged Cu2N2 Diamond Cores that Minimize Structural Reorganization and Facilitate Reversible Redox Behavior between a Cu1Cu1 and a Class III Delocalized Cu1.5Cu1.5 Species
Harkins, S. B.; Peters, J. C.; J. Am. Chem. Soc., 2004, 126, 2885-2893.
Platinum-Alkyl and Hydride Complexes Supported by a Tris(phosphino)borate Ligand: Structural and Spectroscopic Studies
Thomas, J. C.; Peters, J. C.; Polyhedron, 2004, 23, 489-497.
Coordinating Anions: (Phosphino)tetraphenylborate Ligands as New Reagents for Synthesis
Thomas, C. M.; Peters, J. C.; Inorg. Chem., 2004, 43, 8-10.
Solution and Solid-State Spin-Crossover Behavior in a Pseudotetrahedral d7 Ion
Jenkins, D. M.; Peters, J. C.; J. Am. Chem. Soc., 2003, 125, 11162-11163.
Dinitrogen Chemistry from Trigonally Coordinated Iron and Cobalt Platforms
Betley, T. A.; Peters, J. C.; J. Am. Chem. Soc., 2003, 125, 10782-10783.
The Strong-Field Tripodal Phosphine Donor, [PhB(CH2PiPr2)3]-, Provides Access to Electronically and Coordinatively Unsaturated Transition Metal Complexes
Betley, T. A.; Peters, J. C.; Inorg. Chem., 2003, 42, 5074-5084.
Bis(phosphino)borates: A New Family of Monoanionic Chelating Phosphine Ligands
Thomas, J. C.; Peters, J. C.; Inorg. Chem., 2003, 42, 5055-5073.
Zwitterionic and Cationic Bis(phosphine) Platinum(II) Complexes: Structural, Electronic, and Mechanistic Comparisons Relevant to Ligand Exchange and Benzene C−H Activation Processes
Thomas, J. C.; Peters, J. C.; J. Am. Chem. Soc., 2003, 125, 8870-8888.
Zwitterionic Relatives to the Classic [(P-P)-Rh(solv)2]+ Ions: Neutral Catalysts Active for H-E Bond Additions to Olefins (E = C, Si, B)
Betley, T. A.; Peters, J. C.; Angew. Chem., Int. Ed., 2003, 42, 2385-2389.
A Low Spin d5 Iron Imide: Nitrene Capture by Low Coordinate Iron(I) Provides the 4-Coordinate Fe(III) Complex [PhB(CH2PPh2)3]Fe≡N-p-tolyl
Brown, S. D.; Betley, T. A.; Peters, J. C.; J. Am. Chem. Soc. 2003, 125, 322-323.
Synthesis of the (Dialkylamino)borate, [Ph2B(CH2NMe2)2]-, Affords Access to N-chelated Rhodium(I) Zwitterions
Betley, T. A.; Peters, J. C.; Inorg. Chem., 2002, 41, 6541-6543.
Elucidation of a Low Spin Cobalt(II) System in a Distorted Tetrahedral Geometry
Jenkins, D. M.; Di Bilio, A. J.; Allen, M. J.; Betley, T. A.; Peters, J. C.; J. Am. Chem. Soc., 2002, 124, 15336-15350.
Oxidative Group Transfer to Co(I) Affords a Terminal Co(III) Imido Complex
Jenkins, D. M.; Betley, T. A.; Peters, J. C.; J. Am. Chem. Soc., 2002, 124, 11238-11239.
Catalytic Copolymerization of CO and Ethylene with a Charge Neutral Palladium(II) Zwitterion
Lu, C. C.; Peters, J. C.; J. Am. Chem. Soc., 2002, 124, 5272-5273.
Base-Promoted Benzene C-H Activation Chemistry at an Amido Pincer Complex of Platinum(II)
Harkins, S. B.; Peters, J. C.; Organometallics, 2002, 21, 1753-1755.
A Homoleptic Phosphine Adduct of Tl(I)
Shapiro, I. R.; Jenkins, D. M.; Thomas, J. C.; Day, M. W.; Peters, J. C.; Chem. Commun., 2001, 2152-2153.
Pincer-like Amido Complexes of Platinum, Palladium, and Nickel
Peters, J. C.; Harkins, S. B.; Brown, S. D.; Day, M. W.; Inorg. Chem., 2001, 40, 5083-5091.
Benzene C-H Activation at a Charge Neutral Zwitterionic Platinum(II) Complex
Thomas, J. C.; Peters, J. C.; J. Am. Chem. Soc., 2001, 123, 5100-5101.
Synthesis and Structure of Li[(C5H4)CH2CH2(TACN-iPr2)]. A Lithium Complex Supported by a Cp/TACN-iPr2 Ligand
Qian, B.; Henling, L. M.; Peters, J. C.; Organometallics, 2000, 19, 2805-2808.